Для защиты от акустических колебаний (шума, инфра- и ультразвука) можно использовать следующие методы:
· снижение звуковой мощности источника звука;
• размещение рабочих мест с учетом направленности излучения звуковой энергии;
• удаление рабочих мест от источника звука;
• акустическая обработка помещений;
• звукоизоляция;
• применение глушителей;
• применение средств индивидуальной защиты.
Снижение звуковой мощности источника звука. Для снижения шума механизмов и машин применяют методы, аналогичные методам, снижающим вибрацию машин, т.к. вибрация является источником механического шума.
Аэродинамический шум, вызываемый движением потоков воздуха и газа и обтеканием им элементов механизмов и машин, — наиболее мощный источник шума, снижение которого в источнике наиболее сложно. Для уменьшения интенсивности генерации шума улучшают аэродинамическую форму элементов машин, обтекаемых газовым потоком, и снижают скорость движения газа.
Изменение направленности излучения шума. При размещении установок с направленным излучением необходима соответствующая ориентация этих установок по отношению к рабочим и населенным местам, поскольку величина направленности может достигать 10... 15 дБ. Например, отверстие воздухозаборной шахты вентиляционной установки или устье трубы сброса сжатого газа необходимо располагать так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места.
Удаление рабочих мест от источника звука. Увеличение расстояния от источника звука в 2 раза приводит к уменьшению уровня звука на 6 дБ.
Акустическая обработка помещения — это мероприятие, снижающее интенсивность отраженного от поверхностей помещения (стен, потолка, пола) звука. Для этого применяют звукопоглощающие облицовки поверхностей помещения и штучные (объемные) поглотители различных конструкций, подвешиваемые к потолку помещения. Поглощение звука происходит путем перехода энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в пористом материале облицовки или поглотителя. Для большей эффективности звукопоглощения пористый материал должен иметь открытые со стороны падения звука незамкнутые поры. Звукопоглощающие материалы характеризуются коэффициентом звукопоглощения, равным отношению звуковой энергии, поглощенной материалом, и энергии, падающей на него. Звукопоглощающие материалы должны иметь коэффициент звукопоглощения не менее 0,3. Чем это значение выше, тем лучше звукопоглощающий материал. Звукопоглощающие свойства пористых материалов определяются толщиной слоя, частотой звука, наличием воздушной прослойки между материалом и поверхностью помещения.
Установка звукопоглощающих облицовок снижает уровень шума на 6...8 дБ в зоне отраженного звука (вдали от его источника) и на 2...3 дБ в зоне превалирования прямого шума (вблизи от источника). Несмотря на такое относительно небольшое снижение уровня шума, применение облицовок целесообразно по следующим причинам: во-первых, спектр шума в помещении меняется за счет большей эффективности (8... 10 дБ) облицовок на высоких частотах: он делается более глухим и менее раздражающим; во-вторых, становится более заметным шум оборудования, следовательно, появляется возможность слухового контроля его работы, становится легче разговаривать, улучшается разборчивость речи. По этим причинам помещения концертных залов подвергают акустической обработке.
Штучные звукопоглотители применяют при недостаточности свободных поверхностей помещения для закрепления звукопоглощающих облицовок. Поглотители различных конструкций, представляющие собой объемные тела, заполненные звукопоглощающим материалом (тонкими волокнами), подвешивают к потолку равномерно по площади.
Звукоизоляция. При недостаточности указанных выше мероприятий для снижения уровня шума до допустимых значений или невозможности их осуществления применяют звукоизоляцию.
Снижение шума достигается за счет уменьшения интенсивности прямого звука путем установки ограждений, кабин, кожухов, экранов. Сущность звукоизоляции состоит в том, что падающая на ограждение энергия звуковой волны отражается в значительно большей степени, чем